Bayesian Inference for Regression Copulas
نویسندگان
چکیده
منابع مشابه
Bayesian inference for multivariate copulas using pair-copula constructions
This article provides a Bayesian analysis of pair-copula constructions (Aas et al., 2007 Insurance Math. Econom.) for modeling multivariate dependence structures. These constructions are based on bivariate t−copulas as building blocks and can model the nature of extremal events in bivariate margins individually. According to recent empirical studies (Fischer et al. (2007) and Berg and Aas (2007...
متن کاملBayesian Inference for Geostatistical Regression Models
The problem of simultaneous covariate selection and parameter inference for spatial regression models is considered. Previous research has shown that failure to take spatial correlation into account can influence the outcome of standard model selection methods. Often, these standard criteria suggest models that are too complex in an effort to compensate for spatial correlation ignored in the se...
متن کاملVariational Inference for Nonparametric Bayesian Quantile Regression
Quantile regression deals with the problem of computing robust estimators when the conditional mean and standard deviation of the predicted function are inadequate to capture its variability. The technique has an extensive list of applications, including health sciences, ecology and finance. In this work we present a nonparametric method of inferring quantiles and derive a novel Variational Bay...
متن کاملSemiparametric Bayesian inference for regression models
This paper presents a method for Bayesian inference for the regression parameters in a linear model with independent and identically distributed errors that does not require the specification of a parametric family of densities for the error distribution. This method first selects a nonparametric kernel density estimate of the error distribution which is unimodal and based on the least-squares ...
متن کاملBayesian Multimodel Inference for Geostatistical Regression Models
The problem of simultaneous covariate selection and parameter inference for spatial regression models is considered. Previous research has shown that failure to take spatial correlation into account can influence the outcome of standard model selection methods. A Markov chain Monte Carlo (MCMC) method is investigated for the calculation of parameter estimates and posterior model probabilities f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Business & Economic Statistics
سال: 2020
ISSN: 0735-0015,1537-2707
DOI: 10.1080/07350015.2020.1721295